Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Jian-Lan Cui, ${ }^{\text {a }}$ * Peng-Mian Huang ${ }^{\text {b }}$ and Wen-Long Guo ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemical Engineering, North University of China, Taiyuan 030051, People's Republic of China, and ${ }^{\mathbf{b}}$ College of Pharmaceuticals \& Biotechnology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
cuijianlan2005@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.035$
ωR factor $=0.088$
Data-to-parameter ratio $=17.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

9-Allyl-3,6-dibromo-9H-carbazole

The title compound, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N}$, was synthesized by N alkylation of 3-bromopropene with 3,6-dibromo-9H-carbazole. The carbazole ring system is essentially planar and perpendicular to the pendant allyl substituent.

Comment

Carbazole derivatives substituted by N-alkylation possess valuable pharmaceutical properties (Buu-Hoï \& Royer, 1950; Harfenist \& Joyner, 1983; Caulfield et al., 2002; Harper et al., 2002). In this paper, the structure of 9-allyl-3,6-dibromo-9Hcarbazole, (I), is reported. It was synthesized by N-alkylation of 3 -bromopropene with 3,6 -dibromo- 9 H -carbazole. The carbazole ring system is essentially planar, with a mean deviation of $0.0082 \AA$ from the plane, consistent with recent determinations of similar structures (Huang et al., 2005; Duan, Huang et al., 2005). The angle between the carbazole ring system and the plane of the allyl group is $89.8(3)^{\circ}$. The $\mathrm{C}-\mathrm{Br}$ distances are 1.908 (4) and 1.910 (4) \AA, consistent with the literature (Allen et al., 1987).

(I)

Experimental

The title compound, (I), was prepared as described by Duan, Han et al. (2005). A solution of potassium hydroxide (7.0 g) in dimethylformamide (50 ml) was stirred at room temperature for $20 \mathrm{~min} .3,6-$ Dibromocarbazole ($6.5 \mathrm{~g}, 20 \mathrm{mmol}$), prepared as in Smith et al. (1992), was added and the mixture stirred for a further 40 min . A solution of 3-bromopropene ($3.63 \mathrm{~g}, 30 \mathrm{mmol}$) in dimethylformamide $(50 \mathrm{ml})$ was added dropwise with stirring. The resulting mixture was then stirred at room temperature for 12 h and poured into water $(500 \mathrm{ml})$, yielding a white precipitate. The solid product was filtered off, washed with cold water and recrystallized from EtOH , giving crystals of (I) (yield $6.53 \mathrm{~g}, 89.5 \%$; m.p. $376-378 \mathrm{~K}$). Compound (I) $(40 \mathrm{mg})$ was dissolved in a mixture of chloroform (5 ml) and ethanol $(5 \mathrm{ml})$ and the solution was kept at room temperature for 16 d . Natural evaporation of the solution gave colourless crystals suitable for X-ray analysis.

Received 11 November 2005
Accepted 7 December 2005
Online 14 December 2005

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Br}_{2} \mathrm{~N} \\
& M_{r}=365.07 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=8.6763(12) \AA \\
& b=10.6439(15) \AA \\
& c=15.7934(18) \AA \\
& \beta=110.803(6)^{\circ} \\
& V=1363.4(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

$D_{x}=1.778 \mathrm{Mg} \mathrm{m}^{-3}$
 $D_{x}=1.778 \mathrm{Mg} \mathrm{m}$ Mo $K \alpha$ radiation

Cell parameters from 2800
reflections
$\theta=3.0-25.2^{\circ}$
$\mu=5.93 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, colourless
$0.26 \times 0.24 \times 0.20 \mathrm{~mm}$
Data collection
Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
$T_{\min }=0.228, T_{\max }=0.306$
7598 measured reflections
2837 independent reflections
2088 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=26.6^{\circ}$
$h=-10 \rightarrow 8$
$k=-11 \rightarrow 13$
$l=-19 \rightarrow 18$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.088$
$S=1.04$
2837 reflections
164 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0355 P)^{2}\right. \\
& \quad+0.9467 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.39 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXTL
Extinction coefficient: 0.0155 (9)

All H atoms were included in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic) and $0.97 \AA$ (methylene), and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Bruker (1997). SADABS (Version 2.0), SMART (Version 5.10), SAINT (Version 5.10) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Buu-Hoï, N. P. \& Royer, R. (1950). J. Org. Chem. 15, 123-130.
Caulfield, T., Cherrier, M. P., Combeau, C. \& Mailliet, P. (2002). European Patent No. 1253141.
Duan, X. M., Han, J., Chen, L. G., Xu, Y. J. \& Li, Y. (2005). Fine Chemicals, 22, 39-40, and 52.
Duan, X. M., Huang, P. M., Zheng, P. W. \& Li, J. S. (2005). Acta Cryst. E61, o3361-o3363.
Harfenist, M. \& Joyner, C. T. (1983). US Patent No. 4379160.
Harper, R. W., Lin, H. S. \& Richett M. E. (2002). World Patent No. 02079154.
Huang, P. M., Li, J. S., Duan, X. M., Zeng, T. \& Yan, X. L. (2005). Acta Cryst. E61, o2366-o2367.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, K., James, D. M., Mistry, A. G., Bye, M. R. \& Faulkner, D. J. (1992). Tetrahedron, 48, 7479-7488.

